Uniqueness of Best *L*₁-Approximations from Periodic Spline Spaces

G. MEINARDUS

Fakultät für Mathematik und Informatik, Universität Mannheim, 6800 Mannheim, West Germany

AND

G. Nürnberger

Mathematisches Institut, Universität Erlangen-Nürnberg, 8520 Erlangen, West Germany

Communicated by Oved Shisha

Received December 8, 1987

It is shown that every periodic continuous function has a unique best L_1 -approximation from a given periodic spline space, although these spaces are not weak Chebyshev in general. © 1989 Academic Press, Inc.

INTRODUCTION

Standard spaces for approximating periodic continuous functions $f: [a, b] \to \mathbf{R}$ (i.e., f(a) = f(b)) are spaces of periodic splines. We denote by $P_m(K_n)$ the *n*-dimensional space of periodic splines of order $m \ge 2$ with the set of knots $K_n = \{x_0, ..., x_n\}$, where $a = x_0 < x_1 < \cdots < x_{n-1} < x_n = b$.

The space $P_m(K_n)$ is weak Chebyshev for odd *n*. We show that any periodic weak Chebyshev space G (i.e., g(a) = g(b) for all $g \in G$) with some additional property is necessarily of odd dimension. In particular, the space $P_m(K_n)$ is not weak Chebyshev for even *n*.

Our object is to prove a uniqueness result on best L_1 -approximation by periodic splines. The standard spaces for which uniqueness of best L_1 -approximations is known are all weak Chebyshev and have even a stronger property (A) (cf. Sommer [4] and Strauss [5]). We show that every periodic continuous function has a unique best L_1 -approximation from $P_m(K_n)$, although $P_m(K_n)$ is not weak Chebyshev in general.

MAIN RESULTS

Let $C^r[a, b]$ be the space of all *r*-times continuously differentiable real functions on the interval [a, b]. The space of polynomials of order at most *m* is denoted by Π_m . Let a set of knots $K_n = \{x_0, ..., x_n\}$ with $n \ge 1$ and $a = x_0 < x_1 < \cdots < x_{n-1} < x_n = b$ be given. For $m \ge 2$ we call

$$P_m(K_n) = \{ s \in C^{m-2}[a, b] : s \mid_{(x_{i-1}, x_i]} \in \Pi_m, i = 1, ..., n, \\ s^{(j)}(a) = s^{(j)}(b), j = 0, 1, ..., m-2 \}$$

the space of *periodic splines* of order m with the set of knots K_n .

An *n*-dimensional subspace G of C[a, b] is called *weak Chebyshev*, if every function $g \in G$ has at most n-1 sign changes; i.e., there do not exist points $a \leq t_1 < \cdots < t_{n+1} \leq b$ such that $g(t_i) g(t_{i+1}) < 0$, i = 1, ..., n.

We note that by induction on m using Rolle's theorem it is not difficult to verify that every spline in $P_m(K_n)$ has at most n-1 (respectively n) sign changes, if n is odd (respectively even). In particular, the *n*-dimensional space $P_m(K_n)$ is weak Chebyshev for odd n (compare also Schumaker [3]). Our first result on weak Chebyshev spaces of periodic functions implies that this is not true for even n.

A subspace G of C[a, b] is called *periodic*, if g(a) = g(b) for all $g \in G$. This definition differs from that given in Zielke [6, p. 20].

We next show that certain periodic weak Chebyshev spaces must have odd dimension. A similar result, which can be easily derived from Theorem 1, was proved in Zielke [6, p. 20].

THEOREM 1. Let G be a periodic weak Chebyshev subspace of C[a, b]. If there exists a function $g_0 \in G$ with $g_0(a) \neq 0$, then the dimension of G is odd.

Proof. Let $g_1, ..., g_n$ form a basis of the *n*-dimensional periodic weak Chebyshev subspace G of C[a, b]. Since the functions $g_1, ..., g_n$ are linearly independent, there exist points $a \leq t_1 < \cdots < t_n \leq b$ such that the determinant det $(g_i(t_j))_{i,j=1}^n$ is nonzero. Thus there exists a function $g \in G$ such that

$$g(t_i) = (-1)^i, \quad i = 1, ..., n.$$

We first consider the case $g(a) \neq 0$. Then we have sgn g(a) = -1, since otherwise by considering the points $a, t_1, ..., t_n$ we see that g has n sign changes, contradicting the assumption that G is weak Chebyshev. Since gis a periodic function, we have sgn g(b) = -1. For even n we get sgn $g(t_n) = 1$. By considering the points $t_1, ..., t_n$, b we see that g has again n sign changes, contradicting our assumption. We now consider the case g(a) = 0. Let $g_0 \in G$ be the function with $g_0(a) \neq 0$. We may assume that sgn $g_0(a) = 1$. For all $\varepsilon > 0$ we define the function $g_{\varepsilon} \in G$ by $g_{\varepsilon} = g + \varepsilon g_0$. Then

$$\operatorname{sgn} g_{\varepsilon}(a) = 1$$

and for sufficiently small $\varepsilon > 0$ we still have

$$\operatorname{sgn} g_{\varepsilon}(t_i) = (-1)^i, \quad i = 1, ..., n.$$

Hence g_{ε} has at least *n* sign changes, contradicting our assumption. This proves Theorem 1.

We note that Theorem 1 is no longer true, if we drop the assumption that there exists a function $g_0 \in G$ with $g_0(a) \neq 0$. This can be seen by following the example.

Let points $a = x_i < x_2 < \cdots < x_{n+m} = b$ be given and $G = \text{span}\{B_1^m, ..., B_n^m\}$, where for each $i \in \{1, ..., n\}$ the function B_i^m is the *B*-spline of order *m* with support (x_i, x_{i+m}) . Then it is well known that *G* is an *n*-dimensional periodic weak Chebyshev subspace of C[a, b] such that g(a) = 0 for all $g \in G$ (see Schumaker [3]).

Following the proof of Theorem 1 we see that the next result holds.

COROLLARY 2. Let G be a periodic weak Chebyshev subspace of C[a, b] of dimension n. If there exists a function $g_0 \in G$ with $g_0(a) \neq 0$, then there is no function $g \in G$ with n-1 sign changes on [a, b] satisfying g(a) = 0.

We now investigate the uniqueness of best L_1 -approximations from $P_m(K_n)$ for periodic functions in C[a, b].

For all functions $h \in C[a, b]$ the L_1 -norm is defined by

$$\|h\|_{1} = \int_{a}^{b} |h(t)| dt.$$
(1)

Let a subspace G of C[a, b] and a function $f \in C[a, b]$ be given. A function $g_f \in G$ is called a *best* L_1 -approximation of f from G, if

$$\|f - g_f\|_1 = \inf_{g \in G} \|f - g\|_1.$$
⁽²⁾

In the following we prove a global unicity result for best L_1 -approximations from $P_m(K_n)$. For doing this we need some notations and results.

Given a function $f \in C[a, b]$ we set $Z(f) = \{t \in [a, b]: f(t) = 0\}$. Moreover, if A is a subset of [a, b], then we denote by |A| the number of points in A.

The first result on zeros of periodic splines can be found in Schumaker [3].

116

LEMMA 3. Let a spline $s \in P_m(K_n)$ be given such that $|Z(s)| < \infty$. If n is even (respectively odd), then $|Z(s) \cap [a, b)| \leq n$ (respectively $|Z(s) \cap [a, b)| \leq n-1$). Moreover, if $|Z(s) \cap [a, b)| = n$, then s changes sign at the zeros in (a, b).

The next result on weak Chebyshev spaces is well known (see, e.g., Deutsch, et al. [1]).

LEMMA 4. Let an n-dimensional weak Chebyshev subspace of C[a, b]and points $a = t_0 < t_1 < \cdots < t_r < t_{r+1} = b$ be given, where $0 \le r \le n-1$. Then there exists a nontrivial function $g \in G$ such that

$$(-1)^{i} g(t) \ge 0, \quad t \in [t_{i-1}, t_{i}], i = 1, ..., r+1.$$
 (3)

The following characterization of best L_1 -approximations can be found in Rice [2].

THEOREM 5. Let G be a subspace of C[a, b] and $f \in C[a, b]$. The following statements hold:

(i) A function $g_f \in G$ is a best L_1 -approximation of f if and only if for all $g \in G$,

$$\int_{a}^{b} g(t) \operatorname{sgn}(f(t) - g_{f}(t)) dt \leq \int_{Z(f - g_{f})} |g(t)| dt.$$
(4)

(ii) If $g_1, g_2 \in G$ are best L_1 -approximations of f, then

$$(f(t) - g_1(t))(f(t) - g_2(t)) \ge 0, \qquad t \in [a, b].$$
(5)

We are now in position to prove the announced unicity result.

THEOREM 6. Every periodic function in C[a, b] has a unique best L_1 -approximation from $P_m(K_n)$.

Proof. Suppose that the claim is false. Then there exists a function $f \in C[a, b]$ such that $s_1 = 0$ and $s_0 \in P_m(K_n)$, $s_0 \neq 0$, are best L_1 -approximations of f from $P_m(K_n)$. It follows from Theorem 5 that

$$f(t)(f(t) - s_0(t)) \ge 0, \quad t \in [a, b].$$

This implies that for all $t \in [a, b]$,

$$|f(t) - \frac{1}{2}s_0(t)| = |\frac{1}{2}(f(t) - s_0(t)) + \frac{1}{2}f(t)| = \frac{1}{2}|f(t) - s_0(t)| + \frac{1}{2}|f(t)|.$$

Therefore, if $f(t) - \frac{1}{2}s_0(t) = 0$, then $\frac{1}{2}|f(t) - s_0(t)| + \frac{1}{2}|f(t)| = 0$ which implies that $s_0(t) = 0$. This shows that

$$Z(f - \frac{1}{2}s_0) \subset Z(s_0).$$
 (6)

Claim. There exists a nontrivial function $s \in P_m(K_n)$ such that

$$(f(t) - \frac{1}{2}s_0(t)) s(t) \ge 0, \quad t \in [a, b],$$
 (7)

and

$$s(t) = 0, \quad t \in [c, d], \quad \text{if } f(t) - \frac{1}{2}s_0(t) = 0, t \in [c, d], \quad (8)$$

for all c < d.

Suppose for the moment that the claim is true. Then it follows that

$$\int_{a}^{b} s(t) \operatorname{sgn}(f(t) - \frac{1}{2}s_{0}(t)) > 0 = \int_{Z(f - (1/2)s_{0})} |s(t)| dt$$

Then by Theorem 5 the spline $\frac{1}{2}s_0$ is not a best L_1 -approximation of f from $P_m(K_n)$ which is a contradiction, since $s_1 = 0$ and $s_0 \in P_m(K_n)$ are best L_1 -approximations of f. Therefore, it remains to prove the existence of the spline s as in the claim. It suffices to consider three cases.

Case 1. $|Z(s_0)| < \infty$. We first consider the case when *n* is odd. It follows from Lemma 3 that $|Z(s_0) \cap (a, b)| \le n-1$. Then by (6) the function $f - \frac{1}{2}s_0$ has at most n-1 sign changes. Thus there exists a sign $\sigma \in \{-1, 1\}$ and points $a = t_0 < t_1 < \cdots < t_r < t_{r+1} = b$, where $0 \le r \le n-1$, such that

$$\sigma(-1)^{i}\left(f(t) - \frac{1}{2}s_{0}(t)\right) \ge 0, \qquad t \in [t_{i-1}, t_{i}], i = 1, ..., r.$$
(9)

Since *n* is odd, $P_m(K_n)$ is an *n*-dimensional weak Chebyshev space. Therefore, by Lemma 4 there exists a nontrivial function $s \in P_m(K_n)$ such that

$$\sigma(-1)^{i} s(t) \ge 0, \qquad t \in [t_{i-1}, t_{i}], i = 1, ..., r.$$
(10)

Then it follows from (9) and (10) that the spline s has the desired property (7).

We now consider the case when n is even. We set $K_{n-1} = \{y_0, ..., y_{n-1}\}$, where $y_i = x_i$, i = 0, ..., n-2, and $y_{n-1} = b$. Since n-1 is odd, $P_m(K_{n-1})$ is an (n-1)-dimensional weak Chebyshev space.

Case 1.1. $f(a) - \frac{1}{2}s_0(a) = 0$. It follows from (6) that $s_0(a) = 0$. Then by Lemma 3 we have $|Z(s_0) \cap (a, b)| \le n-1$. Therefore, by (6) the function $f - \frac{1}{2}s_0$ has at most n-1 sign changes. If $f - \frac{1}{2}s_0$ has at most n-2 sign changes, then analogously as in the case when n is even, there exists a spline $s \in P_m(K_{n-1}) \subset P_m(K_n)$ satisfying (7). If $f - \frac{1}{2}s_0$ changes sign at n-1 points $t_1 < \cdots < t_{n-1}$ in (a, b), then by (6) we have $t_1, \ldots, t_{n-1} \in Z(s_0)$. Since $s_0(a) = 0$, it follows from Lemma 3 that $Z(s_0) \cap (a, b) = \{t_1, \ldots, t_{n-1}\}$ and s_0 changes sign at the points t_1, \ldots, t_{n-1} . Therefore, the spline $s = s_0$ or $s = -s_0$ satisfies (7).

Case 1.2. $f(a) - \frac{1}{2}s_0(a) \neq 0$. It follows from Lemma 3 that $|Z(s_0) \cap (a, b)| \leq n$. Then by (6) we have $|Z(f - \frac{1}{2}s_0) \cap (a, b)| \leq n$. Moreover, since $f(a) - \frac{1}{2}s_0(a) = f(b) - \frac{1}{2}s_0(b) \neq 0$, the function $f - \frac{1}{2}s_0$ has an even number of sign changes. If $f - \frac{1}{2}s_0$ has at most n - 2 sign changes, then analogously as in Case 1.1 there exists a spline $s \in P_m(K_{n-1}) \subset P_m(K_n)$ satisfying (7). If $f - \frac{1}{2}s_0$ changes sign at n points $t_1 < \cdots < t_n$ in (a, b), then by (6) we have $t_1, \ldots, t_n \in Z(s_0)$. Moreover, it follows from Lemma 3 that $Z(s_0) \cap (a, b) = \{t_1, \ldots, t_n\}$ and s_0 changes sign at the points t_1, \ldots, t_n . Therefore, the spline $s = s_0$ or $s = -s_0$ satisfies (7).

Case 2. $s_0(t) = 0$, $t \in [x_k, x_l] \cup [x_p, x_q]$, where k < l < p < q, and $|Z(s_0) \cap (x_l, x_p)| < \infty$. It is well known that

$$G = \{s \mid [x_k, x_q] : s \in P_m(K_n) \text{ and } s(t) = 0, t \in [x_k, x_l] \cup [x_p, x_q] \}$$

is a (p-l-m+1)-dimensional weak Chebyshev space. Since $s_0|_{[x_k, x_q]} \in G$ and $|Z(s_0) \cap (x_l, x_p)| < \infty$, we have $|Z(s_0) \cap (x_l, x_p)| \le p-l-m$ (see Schumaker [3]). Then by (6) the function $f-\frac{1}{2}s_0$ has at most p-1-msign changes in (x_l, x_q) . Therefore, analogously as above there exists a spline $s \in G$ such that

$$(f(t) - \frac{1}{2}s_0(t)) s(t) \ge 0, \quad t \in [x_1, x_p].$$

We now extend s to [a, b] by defining

$$s(t) = 0, \qquad t \in [a, x_k] \cup [x_a, b],$$

which implies that $s \in P_m(K_n)$ has the desired properties (7) and (8).

Case 3. $s_0(t) = 0, t \in [x_p, x_q]$, where p < q, and $|Z(s_0) \cap ([a, b] \setminus [x_p, x_q])| < \infty$. By identifying b with a we may consider the interval [a, b) as a circle T with circumference b - a. We set

$$y_i = x_{i+q}, \qquad i = 0, ..., n-q,$$

and

$$y_i = x_{i-n+q}, \quad i = n-q+1, ..., n-q+p.$$

Then the space

$$\left\{s \in P_m(K_n): s(t) = 0, t \in [x_p, x_q]\right\}$$

may be identified with the space

$$H = \{s \in C^{m-2}(T) : s \mid [y_{i-1}, y_i] \in \Pi_m, i = 1, ..., n-q+p,$$

and $s(t) = 0, t \in [y_{n-q+p}, y_0]\}.$

The space *H* may be considered as a usual spline space and it is well known that *H* is a (n+p-q-m+1)-dimensional weak Chebyshev space. Since $s_0 \in H$ and $|Z(s_0) \cap ([a, b] \setminus [x_p, x_q])| < \infty$ we have $|Z(s_0) \cap ([a, b] \setminus [x_p, x_q])| \le n+p-q-m$ (see Schumaker [3]). Then by (6) the function $f - \frac{1}{2}s_0$ has at most n+p-q-m sign changes in $[a, b] \setminus [x_p, x_q]$. Therefore, analogously as above there exists a spline $s \in H$ satisfying (7) and (8). This proves Theorem 6.

References

- F. DEUTSCH, G. NÜRNBERGER, AND I. SINGER, Weak Chebyshev subspaces and alternation, Pacific J. Math. 89 (1980), 9-31.
- 2. J. R. RICE, "The Approximation of Functions I," Addison-Wesley, Reading, MA, 1964.
- 3. L. L. SCHUMAKER, "Spline Functions: Basic Theory," Wiley-Interscience, New York, 1981.
- M. SOMMER, Weak Chebyshev spaces and best L₁-approximation, J. Approx. Theory 39 (1983), 54-71.
- 5. H. STRAUSS, Best L₁-approximation, J. Approx. Theory 41 (1984), 297-308.
- R. ZIELKE, "Discontinuous Cebysev Systems," Lecture Notes in Mathematics, Vol. 707, Springer-Verlag, Berlin, 1979.