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It is shown that every periodic continuous function has a unique best L;-
approximation from a given periodic spline space, although these spaces are not
weak Chebyshev in general.  © 1989 Academic Press, Inc.

INTRODUCTION

Standard spaces for approximating periodic continuous functions
f:[a, b] - R (i.e, f(a)=f(b)) are spaces of periodic splines. We denote by
P, (K,) the n-dimensional space of periodic splines of order m > 2 with the
set of knots K, = {xg, .., X,}, where a=x,<x;<---<x,_;<Xx,=b.

The space P,(K,) is weak Chebyshev for odd n. We show that any
periodic weak Chebyshev space G (i.c., g(a) = g(b) for all ge G) with some
additional property is necessarily of odd dimension. In particular, the space
P,(K,) is not weak Chebyshev for even n.

Our object is to prove a uniqueness result on best L;-approximation
by periodic splines. The standard spaces for which uniqueness of best
L ,-approximations is known are all weak Chebyshev and have even a
stronger property (A) (cf. Sommer [4] and Strauss [5]). We show that
every periodic continuous function has a unique best L;-approximation
from P,,(K,), although P,(K,) is not weak Chebyshev in general.
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MAIN RESULTS

Let C'{a, b] be the space of all r-times continucusly differentiable real
functions on the interval [, b]. The space of polynomials of order at most
m is denoted by I7,. Let a set of knots K, = {x,, .., x,} with n>1 and
a=Xxg<Xy<---<Xx,_;<x,=b be given. For m>2 we call

P K,)={seC" *[a,b]: 8, xn€Mmi=1,..n,
s a)y=sV(b),j=0,1,..,m—2}

the space of periodic splines of order m with the set of knots X,,.

An n-dimensional subspace G of Cla, b] is called weak Chebyshey, i
every function g€ G has at most n— 1 sign changes; i.e.,, there do not exist
points a < f; < ---<t,,; <b such that g(z,) g(r,, ) <0, i=1, ., n

We note that by induction on m using Rolle’s theorem it is not difficult
to verify that every spline in P,,(K,) has at most n— 1 (respectively n) sign
changes, if n is odd (respectively even). In particular, the n-dimensionail
space P, (K,) is weak Chebyshev for odd »n (compare also Schumaker [37).
Our first result on weak Chebyshev spaces of periodic functions implies
that this is not true for even n.

A subspace G of C[aq, b] is called periodic, if g(a)=g(b) for all geG.
This definition differs from that given in Zielke [6, p. 20].

We next show that certain periodic weak Chebyshev spaces must have
odd dimension. A similar result, which can be easily derived from
Theorem 1, was proved in Zielke [6, p. 20].

THeOREM 1. Let G be a periodic weak Chebyshev subspace of Cla, b].
If there exists a function gy G with go(a)#0, then the dimension of G is
odd.

Proof. Let g,.., g, form a basis of the n-dimensional periodic weak
Chebyshev subspace G of C{a, b]. Since the functions g, ..., g, are linearly
independent, there exist points a <1, <---<¢,<b such that the determi-
nant det(g,(t,));,_, is nonzero. Thus there exists a function g € G such that

g(t)=(=1), i=1,.,n

We first consider the case g(a)#0. Then we have sgn g(a)= —1, since
otherwise by considering the points a, 1y, .., f, we see that g has » sign
changes, contradicting the assumption that G is weak Chebyshev. Since g
is a periodic function, we have sgng(b)=—1. For even n we get
sgn g(t,) = 1. By considering the points ¢, ..., z,, b we see that g has again
n sign changes, contradicting our assumption. We now consider the case
g(a)=0. Let goe G be the function with g(a)#0. We may assume that
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sgn go(a)=1. For all ¢>0 we define the function g, G by g,=g + ¢gy-
Then '

sgn g (a)=1

and for sufficiently small >0 we still have

sgn g.(t,)=(—1), i=1,..,n

Hence g, has at least n sign changes, contradicting our assumption. This
proves Theorem 1.

We note that Theorem 1 is no longer true, if we drop the assumption
that there exists a function goe G with go(a)#0. This can be seen by
following the example.

Let points a= x, < x, < --- < X,,, ,, = b be given and G = span{ BT, .., B},
where for each ie {1, .., n} the function B7 is the B-spline of order m with
support (x,, Xx,.,,)- Then it is well known that G is an n-dimensional
periodic weak Chebyshev subspace of C[a, b] such that g(a)=0 for all
g€ G (see Schumaker [3]).

Following the proof of Theorem 1 we see that the next result holds.

COROLLARY 2. Let G be a periodic weak Chebyshev subspace of C[a, b]
of dimension n. If there exists a function gy € G with go(a) #0, then there is
no function g € G with n— 1 sign changes on [ a, b] satisfying g(a)=0.

We now investigate the uniqueness of best L -approximations from
P, (K,) for periodic functions in C[a, b].
For all functions #e C[a, b] the L,-norm is defined by

b
Ihl= 1A dt. (1)

Let a subspace G of C[a, b] and a function /e C{a, b] be given. A function
gr€ G is called a best L-approximation of f from G, if

”f*gf[h:gigg lf—gl.. (2)

In the following we prove a global unicity result for best L -approxima-
tions from P,,(K,). For doing this we need some notations and results.

Given a function feC[a, b] we set Z(f)={te[a, b]:f(t)=0}.
Moreover, if 4 is a subset of [a, »], then we denote by | 4| the number of
points in A.

The first result on zeros of periodic splines can be found in
Schumaker [3].
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LemMa 3. Let a spline se P, (K,) be given such that |Z(s)| < . If n is
even (respectively odd), then | Z(s) N [a, b)| < n (respectively | Z(s)n [a, b))
<n—1). Moreover, if | Z(s) 0 [a, b)] =n, then s changes sign at the zeros in
{a, b).

The next result on weak Chebyshev spaces is well known (see, eg.,
Deutsch, ef al. [1]).

LemMa 4. Let an n-dimensional weak Chebyshev subspace of Cla, b]
and points a=1t,<t; < ---<t,<t,,,=Db be given, where 0<r<n—1. Then
there exists a nontrivial function ge G such that

(—1)'g()=0, telt, 1, ] i=1, ., r+L (3)

The following characterization of best L;-approximations can be found
in Rice [2].

THEOREM 5. Let G be a subspace of Cla,b] and feCla, b]. The
Jfollowing statements hold.

(i) A function gre G is a best L-approximation of f if and only if for
al ge G,

[ ssents-ginars| e @

*gf)
(ii) If g,,g,€G are best L,-approximations of f, then

(f(O) —g: )N f(1)—g1)) 20,  1e[a b]. (5

We are now in position to prove the announced unicity result.

THEOREM 6. FEvery periodic function in Cla, b1 has a unique best L,-
approximation from P, (K,).

Proof. Suppose that the claim is false. Then there exists a function

feCla, b] such that s, =0 and sqe P,,(K,), so#0, are best L -approxima-
tions of f from P,(K,). It follows from Theorem 5 that

FOS (@) —so(1))=0,  telab].
This implies that for all e [a, b],
| f(2) = 3so()] = 1 (S (1) = 50()) + 3 (1)) = 31 f (1) — 5o + 5 | (D).
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Therefore, if f(z)—3s4(¢) =0, then 1| f(¢)—so(t)l+3%]|f(¢)] =0 which
implies that sq(¢) = 0. This shows that

Z(f~ 150) = Z(s,). (6)
Claim. There exists a nontrivial function se P,,(K,) such that
(f(1)=5so(1)) ()20,  telab], (7)

and
s(1)=0, tele d], if f(£)—3%s0(2)=0, t€[c, d], 8)

for all c<d.
Suppose for the moment that the claim is true. Then it follows that

[ ste) sgn( ()~ dsuf)) > 0= |s(e)
a Z(f—(1/2) s0)

Then by Theorem 5 the spline s, is not a best L;-approximation of f from
P, (K,) which is a contradiction, since s, =0 and sq&P,(K,) are best
L,-approximations of f. Therefore, it remains to prove the existence of the
spline s as in the claim. It suffices to consider three cases.

Case 1. |Z(so)l <oo. We first consider the case when n is odd. It
follows from Lemma3 that |Z(sq)n(a, b)]<n—1. Then by (6) the
function f— 4s, has at most n— 1 sign changes. Thus there exists a sign
ce{—1,1} and points a=t,<t;<---<t,<t,, ,=b, where 0<r<n—1,
such that

a(=1)' (f()—250()) 20,  telt,_y, 1) i=1,.,7 9)

Since n is odd, P,,(K,) is an n-dimensional weak Chebyshev space. There-
fore, by Lemma 4 there exists a nontrivial functon se P,(K,) such that

o(—1)s(t) =0, tet,_, ), i=1,.,r (10)

Then it follows from (9) and (10) that the spline s has the desired property
(7).

We now consider the case when 7 is even. We set K, _; = {¥o, s Vu_1}>
where y,=x;,i=0,..,n-2, and y,_,=5b. Since n—1 is odd, P, (K,_;) is
an (n— 1)-dimensional weak Chebyshev space.

Case 1.1. f(a)— 3so(a)=0. It follows from (6) that so(a)=0. Then by
Lemma 3 we have | Z(sy) N (a, b)] <n— 1. Therefore, by (6) the function
f—3s, has at most n—1 sign changes. If f— s, has at most n—2 sign
changes, then analogously as in the case when n is even, there exists a
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spline se P, (K,_,) < P,(K,) satisfying (7). If f— s, changes sign at n—1
points 1, < ---<t,_, in (a, b), then by (6) we have 1, ..., 7,_, € Z(s,). Since
sol@) =0, it follows from Lemma 3 that Z(s,) " (a, &)= {t;, ..., 1,_} and ¢
changes sign at the points ¢, .., 1,_;. Therefore, the spline s=g, or
5= —s5, satisfies (7).

Case 1.2. f(a)—3$so(a)#0. It follows from Lemma 3 that |Z(sy)n
(a, b)) <n. Then by (6) we have | Z(f— 3s,) N (a, b)] < n. Moreover, since
flay—4so(a) =f(b) — 3s4(b) #0, the function f— s, has an even number of
sign changes. If f— s, has at most n — 2 sign changes, then analogously as
in Case 1.1 there exists a spline se P, (K,_,)= P,(K,) satisfving (7). If
f—3so changes sign at n points ¢, <--- <1, in (g, b), then by (6) we have
tyy e t,€ Z(55). Moreover, it follows from Lemma 3 that Z(s,) n(a, b) =
{ty, ... 1,} and s, changes sign at the points ¢,, .., ¢,. Therefore, the spline
§=25, Or = —, satisfies (7).

Case 2. s54(t)=0, tel[x,,x,Julx,,x,], where k<l<p<g, and
[Z(s0) O (x), x,)| < co. It is well known that

G={5rx, 5 5€ Pa(K,)and s(t) =0, t& [x;, x,J U [x,, x,]}

is a (p—[—m+ 1)-dimensional weak Chebyshev space. Since 5o, 1€ C
and | Z(so) N (x;, x,) <00, we have [Z(sy)n(x,x,)<p—I—m (see
Schumaker [3]). Then by (6) the function f— s, has at most p—1—m
sign changes in (x;, x,). Therefore, analogously as above there exists a
spline s& G such that

(f(1)—350(1)) (1) 20,  relx;,x,].
We now extend s to [a, b] by defining
s(2)=0, tela, x, Julx,, bl
which implies that se P,(K,) has the desired properties (7) and (8).

Case 3. s54(t)=0,te[x,,x,], where p<gq, and |Z(so)n([a, b]\
[x,, x, DI < co. By identifying b with a we may consider the interval [a, b}
as a circle T with circumference b —a. We set

y1='xi+q5 i=05--'3n_q7
and
yt:x1—~n+q9 l=n"q+1,,n—q+p

Then the space

{SEPm(Kn): S(t)=07 te ['xﬂ’ xq]}
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may be identified with the space
H={seC" D):sltp_, €My, i=1,..,n—qg+p,
and S(t)=05 te [yn—q+p= yO]}

The space H may be considered as a usual spline space and it is well
known that H is a (n+ p— g —m+ 1)-dimensional weak Chebyshev space.
Since soeH and |Z(so)n([a, b]\[x,, x,])] <oo we have |Z(sq)
([a, b1\ [x,, x,1)| <n+p—q—m (see Schumaker [3]). Then by (6) the
function f— 35, has at most n+ p —q —m sign changes in [a, 51\ [x,, x,].
Therefore, analogously as above there exists a spline se€ H satisfying (7)
and (8). This proves Theorem 6.
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