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It is shown that every periodic continuous function has a unique best L 1

approximation from a given periodic spline space, although these spaces are not
weak Chebyshev in general. © 1989 Academic Press, Inc.

INTRODUCTION

Standard spaces for approximating periodic continuous functions
j: [a, b] ---+R (i.e.,j(a)=j(b» are spaces of periodic splines. We denote by
Pm(Kn ) the n-dimensional space of periodic splines of order m ~ 2 with the
set of knots Kn = {xo, ..., x n }, where a=xo< Xl < ... <xn - l < X n =b.

The space Pm(Kn) is weak Chebyshev for odd n. We show that any
periodic weak Chebyshev space G (i.e., g(a) =g(b) for all g E G) with some
additional property is necessarily of odd dimension. In particular, the space
Pm(Kn) is not weak Chebyshev for even n.

Our object is to prove a uniqueness result on best Ll-approximation
by periodic splines. The standard spaces for which uniqueness of best
Lcapproximations is known are all weak Chebyshev and have even a
stronger property (A) (cf. Sommer [4] and Strauss [5]). We show that
every periodic continuous function has a unique best Lr-approximation
from Pm(Kn), although Pm(Kn) is not weak Chebyshev in general.
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Let CTa, b] be the space of all r-times continuously differentiable real
functions on the interval [a, b]. The space of polynomials of order at most
m is denoted by JIm' Let a set of knots Kn = {xo, ..., xn } with n~ 1 and
a =Xo < Xl < ... <Xn -l <xn = b be given. For m ~2 we call

Pm(Kn) = {s E Cm- 2 [a, b]: sl (X,-i. x,] E JIm' i= 1, ... , n,

s(J)(a)=s(J)(b),j=O, 1, ..., m-2}

the space of periodic splines of order m with the set of knots K n •

An n-dimensional subspace G of C[a, b] is called weak Chebyshev, if
every function g E G has at most n - 1 sign changes; i.e., there do not exist
points a~ t 1 < ... < tn +1 ~ b such that g(t,) g(t,+ d < 0, i = 1, ..., n.

We note that by induction on m using Rolle's theorem it is not difficult
to verify that every spline in Pm(Kn) has at most n - 1 (respectively n) sign
changes, if n is odd (respectively even). In particular, the n-dimensional
space Pm(Kn) is weak Chebyshev for odd n (compare also Schumaker [3]).
Our first result on weak Chebyshev spaces of periodic functions implies
that this is not true for even n.

A subspace G of C[a,b] is called periodic, if g(a)=g(b) for all gEG.
This definition differs from that given in Zielke [6, p. 20].

We next show that certain periodic weak Chebyshev spaces must have
odd dimension. A similar result, which can be easily derived from
Theorem 1, was proved in Zielke [6, p.20].

THEOREM 1. Let G be a periodic weak Chebyshev subspace of C[a, b].
If there exists a function go E G with go(a) =f 0, then the dimension of G is
odd.

Proof Let g1, ... , gn form a basis of the n-dimensional periodic weak
Chebyshev subspace G of C[a, b]. Since the functions gl, ..., gn are linearly
independent, there exist points a ~ t 1 < ... < tn ~ b such that the determi
nant det(gi( t) )ZJ ~ 1 is nonzero. Thus there exists a function g EG such that

g(tJ = (-1L i= 1, ..., n.

We first consider the case g(a)=fO. Then we have sgn g(a)= -1, since
otherwise by considering the points a, t1, ... , tn we see that g has n sign
changes, contradicting the assumption that G is weak Chebyshev. Since g
is a periodic function, we have sgn g(b) = - 1. For even n we get
sgn g( tn) = 1. By considering the points t1, ..., tn' b we see that g has again
n sign changes, contradicting our assumption. We now consider the case
g(a) = O. Let go E G be the function with go(a) =f O. We may assume that
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sgngo(a) = 1. For all e>O we define the function geEG by ge=g+ego'
Then '

and for sufficiently small e> 0 we still have

i= 1, ..., n.

Hence ge has at least n sign changes, contradicting our assumption. This
proves Theorem 1.

We note that Theorem 1 is no longer true, if we drop the assumption
that there exists a function goEG with go(a) #0. This can be seen by
following the example.

Let points a =x, < X 2 < ... < X n + m = b be given and G= span {B'[', ..., B';},
where for each i E {I, ..., n} the function B'(' is the B-spline of order m with
support (x" x,+m)' Then it is well known that G is an n-dimensional
periodic weak Chebyshev subspace of C[a, b] such that g(a) = 0 for all
gE G (see Schumaker [3]).

Following the proof of Theorem 1 we see that the next result holds.

COROLLARY 2. Let G be a periodic weak Chebyshev subspace of C[a, b]
of dimension n. If there exists a function go E G with go(a) # 0, then there is
no function g E G with n - 1 sign changes on [a, b] satisfying g(a) = O.

We now investigate the uniqueness of best Lcapproximations from
Pm(Kn) for periodic functions in C[a, b].

For all functions hE C[a, b] the L1-norm is defined by

Ilh11 1 = rIh(t)1 dt.
a

(1 )

Let a subspace G of C[a, b] and a functionfE C[a, b] be given. A function
gfE G is called a best Lcapproximation off from G, if

(2)

In the following we prove a global unicity result for best L1-approxima
tions from Pm(Kn). For doing this we need some notations and results.

Given a function fEC[a,b] we set Z(f) = {tE [a,b]:f(t)=O}.
Moreover, if A is a subset of [a, b], then we denote by IA I the number of
points in A.

The first result on zeros of periodic splines can be found in
Schumaker [3].
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LEMMA 3. Let a spline s E Pm(Kn) be given such that 1Z(s)1 < rxJ. If n is
even (respectively odd), then IZ(s) n [a, b)1 ~n (respectively IZ(s) n [a, b)1
~n-l). Moreover, ifIZ(s)n [a, b)1 =n, then s changes sign at the zeros in
(a, b).

The next result on weak Chebyshev spaces is well known (see, e.g.,
Deutsch, et al. [1]).

LEMMA 4. Let an n-dimensional weak Chebyshev subspace of era, b]
and points a = to < t1 < ... < t r < t r + 1 = b be given, where 0 ~ r ~ n - 1. Then
there exists a nontrivial function g E G such that

t E [t! _ 1, tJ, i = 1, ..., r + 1. (3 )

The following characterization of best L 1-approximations can be found
in Rice [2].

THEOREM 5. Let G be a subspace of C[a, b] and fE C[a, b]. The
following statements hold:

(i) A function gfE G is a best Lcapproximation off if and only iffor
all geG,

rget) sgn(f(t) - gf(t» dt ~ f I g(t)1 dt.
a Z(f-gj )

(ii) If g 1, g 2 E G are best Lcapproximations off, then

(4)

tE[a,b]. (5)

We are now in position to prove the announced unicity result.

THEOREM 6. Every periodic function in C[a, b] has a unique best L 1

approximation from Pm(Kn ).

Proof Suppose that the claim is false. Then there exists a function
fe C[a, b] such that SI = 0 and SoE Pm(Kn ), So 0;60, are best L 1-approxima
tions of f from Pm(Kn). It follows from Theorem 5 that

f(t)(f(t) - so(t» ~ 0, tE [a, b].

This implies that for all t E [a, b],

j f(t) - !so(t)j = I!(f(t) - so(t» + y(t)1 = ! j f(t) - so(t)j + ! I f(t)l·
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Therefore, if f(t)-~so(t)=O, then ~lf(t)-so(t)I+~lf(t)I=O which
implies that so(t) = O. This shows that

Claim. There exists a nontrivial function s E Pm(Kn ) such that

(6)

and

(f(t) - ~so(t» set) ~ 0, tE[a,b], (7)

set) = 0, tE[e,dJ, if f(t)- !so(t)=O, tE [e, d], (8)

for all e<d
Suppose for the moment that the claim is true. Then it follows that

rset) sgn(f(t) - !so(t» > 0 = f Is(t)1 dt.
a ~f~(~2)~

Then by Theorem 5 the spline ~so is not a best Lcapproximation offfrom
Pm(Kn ) which is a contradiction, since 51 = 0 and So e Pm(Kn ) are best
Lcapproximations off Therefore, it remains to prove the existence of the
spline s as in the claim. It suffices to consider three cases.

Case 1. I2(so)/ < 00. We first consider the case when n is odd. It
follows from Lemma 3 that IZ(so) n (a, b)1 ~ n - 1. Then by (6) the
function f - ~so has at most n - 1 sign changes. Thus there exists a sign
iJE {-I, I} and points a=tO <tl < .. ·<tr <tr + l =b, where O~r~n-l,
such that

iJ( -ll (f(t) - ~so(t» ~ 0, tE [t i - l , t,], i= 1, ..., r. (9)

Since n is odd, Pm(Kn ) is an n-dimensional weak Chebyshev space. There
fore, by Lemma 4 there exists a nontrivial functon s E Pm(Kn ) such that

iJ( -1)' set) ~ 0, tE [t'~I' t,], i= 1, ..., r. (10)

Then it follows from (9) and (10) that the spline s has the desired property
(7).

We now consider the case when n is even. We set Kn- l = {Yo, ..., Yn- d,
where Yi = Xi' i = 0, ..., n - 2, and Yn~ 1 = b. Since n -1 is odd, Pm(Kn - l ) is
an (n - 1)-dimensional weak Chebyshev space.

Case 1.1. f(a)-~so(a)=O. It follows from (6) that so(a) =0. Then by
Lemma 3 we have IZ(so)n(a,b)l~n-1. Therefore, by (6) the function
f - !so has at most n - 1 sign changes. If f - 1so has at most n - 2 sign
changes, then analogously as in the case when n is even, there exists a
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spline S E Pm(Kn- d c Pm(Kn) satisfying (7). Iff- !so changes sign at n-1
points t 1 < '" < tn - 1 in (a, b), then by (6) we have t l , ••• , tn - l E2(so). Since
so(a) = 0, it foHows from Lemma 3 that 2(so) n (a, b) = {tj, ..., tn _ d and So

changes sign at the points t l , ..., tn-I' Therefore, the spline S=So or
s= -so satisfies (7).

Case 1.2. f(a)-~so(a)#O. It follows from Lemma3 that j2(so)n
(a, b)\ ~ n. Then by (6) we have' 2(f- ~so) n (a, b)1 ~ n. Moreover, since
f(a) -!so(a) = f(b) - ~so(b) # 0, the functionf-!so has an even number of
sign changes. Iff- !so has at most n - 2 sign changes, then analogously as
in Case 1.1 there exists a spline S E Pm(Kn _ d c Pm(Kn ) satisfying (7). If
f- !so changes sign at n points t l < ... < tn in (a, b), then by (6) we have
t i' , tn E 2(so)' Moreover, it follows from Lemma 3 that 2(so) n (a, b) =
{t I, , tn} and So changes sign at the points t 1, .. " tn' Therefore, the spline
s = So or s = - So satisfies (7).

Case 2. so(t) = 0, t E [Xk' Xl] U [Xp, x q ], where k < I <p < q, and
I2(so) n (Xl' Xp)1 < 00. It is well known that

G= {SI[Xk,Xq : sEPm(Kn ) ands(t)=O, tE [Xb Xl] U [Xp , x q ]}

is a (p -1- m + 1)-dimensional weak Chebyshev space. Since So I[Xk, Xq ] E G
and !2(so) n (Xl' Xp)1 < 00, we have IZ(so) n (Xl' Xp)1 ~p -l- m (see
Schumaker [3]). Then by (6) the functionf-!so has at rnostp-l-m
sign changes in (Xl> x q ). Therefore, analogously as above there exists a
spline S EG such that

(f(t) - !so(t» s(t)?; 0,

We now extend s to [a, b] by defining

s(t) = 0, tE [a, xd U [xq , b],

which implies that s EPm(Kn) has the desired properties (7) and (8).

Case 3. so(t)=O,tE[Xp,Xq], where p<q, and IZ(so)n([a,b]\
[xp , xq])1 < 00. By identifying b with a we may consider the interval [a, b)
as a circle T with circumference b - a. We set

i=O, ..., n-q,

and

i=n -q+ 1, ..., n-q +p.

Then the space
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may be identified with the space

H = {SE Cm- 2(T); sl [Y'-I,Y,] E llm, i = 1, ..., n - q +p,

and s( t ) = 0, t E [Yn _ q + p' Yo] }.

The space H may be considered as a usual spline space and it is well
known that H is a (n +p - q - m + 1)-dimensional weak Chebyshev space.
Since soEH and /Z(so)n([a,b]\[xp,xq])/<oo we have jZ(so)n
([a,bJ\[xp,xq])/:(n+p-q-m (see Schumaker [3]). Then by (6) the
function f - !so has at most n +p - q - m sign changes in [a, b] \ [xp , x q ].

Therefore, analogously as above there exists a spline s E H satisfying (7)
and (8). This proves Theorem 6.
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